Search results for "Spin engineering"
showing 10 items of 25 documents
Spin qubits with electrically gated polyoxometalate molecules
2007
Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyox…
Entanglement generation between two spin-s magnetic impurities in a solid via electron scattering
2009
Abstract We present a scheme for generating entanglement between two magnetic impurities in a solid-state system via electron scattering. The scheme applies to impurities of arbitrary quantum spin number. We show that resonance conditions yield generation of a maximally entangled state of the impurities' spins, regardless of the value of the electron–impurity coupling constant and the impurity spin quantum number. The mechanism behind the scheme is explained in terms of resonance-induced selection rules.
NUCLEAR MAGNETIC ORDER, USE OF SPIN DEPENDENT AMPLITUDES
1993
The use of the spin dependent part of the nuclear scattering length gives access to neutron scattering to the field of nuclear magnetism. This paper presents the theoretical and experimental background for such experiments. The available results on nuclear order will be reviewed and put if possible in the larger frame of many body physics. The possibilities of using nuclear magnetism for new applications or the improvement of scattering techniques will be stressed as well.
Quantum computing with molecular spin systems
2009
Molecular spintronics promises to combine the flexibility offered by synthetic chemistry with the advantages of an electronics which is based on the electron spin rather than its charge degree of freedom. Here, we review recent work on the description of transport across molecular spin systems and on a proposal for an all-electrical scheme for the implementation of a fundamental two-qubit gate in a certain class of molecular systems.
Spin Hanle effect in mesoscopic superconductors
2014
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Magnetic Nanoparticles as Many-Spin Systems
2005
We have demonstrated by different analytical and numerical methods the importance of accounting for the magnetization inhomogeneities in magnetic nanoparticles, especially in the presence of surface anisotropy. The latter makes the magnetization inhomogeneous even at T = 0 and in general modifies the relation between the intrinsic and induced magnetizations. It also changes the magnetization switching mechanism, since for strong surface anisotropy the particle’s spins switch cluster-wise. For weak surface anisotropy we have been able to calculate the spin canting in the particle analytically and to obtain a novel second-order contribution to the particle’s overall anisotropy. It remains to …
Recent Advances of Spin Crossover Research
2004
Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on "Thermal and Optical Switching of Molecular Spin States (TOSS)". New spin crossover compounds and their thermal spin transition behaviour, al…
Switching the Magnetic Vortex Core in a Single Nanoparticle.
2016
Imaging and manipulating the spin structure of nano- and mesoscale magnetic systems is a challenging topic in magnetism, yielding a wide range of spin phenomena such as skyrmions, hedgehog-like spin structures, or vortices. A key example has been provided by the vortex spin texture, which can be addressed in four independent states of magnetization, enabling the development of multibit magnetic storage media. Most of the works devoted to the study of the magnetization reversal mechanisms of the magnetic vortices have been focused on micrometer-size magnetic platelets. Here we report the experimental observation of the vortex state formation and annihilation in individual 25 nm molecular-bas…
Exploiting Coherence in Nonlinear Spin-Superfluid Transport
2017
We show how the interference between superfluid spin currents can endow spin circuits with coherent logic functionality. While the hydrodynamic aspects of the linear-response collective spin transport obviate interference features, we focus on the nonlinear regime, where the critical supercurrent is sensitive to the phase accumulated by the condensate in a loop geometry. We propose to control this phase by electrical gating, tuning the spin-condensate coherence length. The nonlinear aspects of the spin superfluidity thus naturally lend themselves to the construction of logic gates, uniquely exploiting the coherence of collective spin currents. Vice versa, this functionality can be used to r…
Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases
2007
We report on the observation of the phase dynamics of interacting one-dimensional ultracold bosonic gases with two internal degrees of freedom. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.